Building a Better STEM Pipeline

Recently, I attended the Building a Better Commonwealth forum hosted by the Boston Globe on “Building the Talent Pipeline.” In other words, how do you produce more high-level STEM jobs? Here are some of the things that I learned:

  • Massachusetts is unique for having a statewide plan for developing STEM talent.   Like the (national) report from the President’s Council of Advisors on Science & Technology, the MA plan discusses the need for nurturing curiosity, suggests a strong attention to standards, wants to get more people pursuing STEM, and wants to more effectively prepare teachers.  Unfortunately, it seems that both of these reports fail to address allowing students to excel.  (See below.)  That said, the Massachusetts plan is very impressive, with an eye towards creating coherent curriculum, good experiences, role models, and much more, and a plan for implementation.  If MA pulls this off, it could be quite significant.
  • Apparently STEM learning in MA is particularly pushed by Lt. Gov. Timothy P. Murray. It’s interesting to see how this kind of project gets high-level support.
  • There is a dramatic hiring shortage in STEM. (Well, I already knew that.) But the STEM jobs are not just the desk jobs that you might have in the financial industry or at Google. They’re also repairing and servicing power lines, because the job is so dangerous that you need to know what you’re doing. They’re also factory jobs, which are so automated that they require special expertise. And so forth.
  • It’s really weird to explain that you live in Boston but run a summer program for New York City students.

Here are three reflections:

  • Parents must know what their kids need and push them towards it.  It’s great that there are all of these initiatives, but ultimately, it’s very hard to make up for low-knowledge parents or communities.  There is too much that students learn about from parents; too much push that parents need to give to apply for or attend other programs (how many times did your parents wake you up on a Saturday morning to make sure you got to your activity?); too much information where parents must be part of the process.  Usually, it’s not that parents don’t care deeply for their kids (just the opposite), but that they don’t have a model from their own parents of pushing kids in this way and so it’s not natural to them to provide the push.
  • Rigid curriculum can be severely limiting.  Enforced curricula from a state or national level can block hands-on learning, customization of a student’s work to their interests, or customization of a class to a teacher’s skills.  I think there are good ways to design a curriculum that is flexible to this kind of work, although it hasn’t been done yet.
  • The community does not understand the difference between baseline achievement and excellence.  Most people in education do not realize that getting all A’s does not make you a world-class student.  Even taking lots of AP courses does not necessarily do so.  Students today do research, attend summer programs, do various competitions, and more.  There’s a national infrastructure set up by small independent groups designed to help students achieve excellence, but no one in education pays attention to it.  In part, it’s because there’s a perception that all-A students have “already made it.”  In part, it’s because it can be politically daunting to want to help top students succeed more.  In part, it’s because of a lack of knowledge.  But this kind of structure is necessary to create the best-possible STEM workforce, and it doesn’t have to be based around selective admissions.  There are many good opportunities that anyone can participate in and gain the opportunity to excel.  Yet the constant focus on creating new STEM standards and testing is never going to produce a STEM workforce because it will always be based around broad ideas that don’t develop the top students.

As you can tell, I’ve been thinking a great deal about what a good STEM pipeline should be.  Look for some systemic thoughts in the coming weeks.

Author: danzaharopol

I am a math geek. I love doing math, learning math, and teaching math. Nothing excites me more than working with young people who are discovering new and amazing things. Professionally, I founded Bridge to Enter Advanced Mathematics (BEAM), a program that makes it possible for low-income and underserved students to become scientists, mathematicians, engineers, and programmers. That's where I spend most of my time geeking out about math these days. Prior to BEAM, I was a math graduate student (studying algebraic topology) and taught math in places all around the country. I also co-founded and served as the founding CEO of Learning Unlimited, an organization that mentors college students to create enrichment programs for local middle and high school students. In my non-existent free time, I love board games, great plays, frisbee, and reading.

One thought on “Building a Better STEM Pipeline”

  1. About flexibility in the curriculum: I think the IB curriculum goes at least part of the way there. The classes have some core topics, and then the teacher has a choice of something like two out of six additional topics to teach. Then, on the exams, on many sections there is a large amount of choice (something like write an essay answering two out of thirty questions), so, apart from learning the basics, the students have a lot of choice about which topics to focus their studying on.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: